Annotation Pro API
Public Member Functions | Static Public Member Functions | List of all members
GeneralStatistics Class Reference

General statistics for Annotation Pro helper More...

Public Member Functions

 GeneralStatistics ()
 Standard constructor More...
 
XYValue LinearRegression (List< XYValue > values)
 Linear regression calculates a and b in y = ax + b More...
 

Static Public Member Functions

static double EuclideanDistance (double[] x, double[] y)
 Estimates the Squared Euclidian distance between two tuples. x and y must have the same length. More...
 
static void LinearRegression (double[] xVals, double[] yVals, out double rsquared, out double yintercept, out double slope)
 Fits a line to a collection of (x,y) points. More...
 
static double Mean (List< double > values)
 Mean from vector of double values More...
 
static double nPVI (double[] values)
 Normalized Pairwise Variability Index More...
 
static double rPVI (double[] values)
 Raw Pairwise Variability Index More...
 
static double Sum (List< double > values)
 Sum from vector of double values More...
 

Detailed Description

General statistics for Annotation Pro helper

Constructor & Destructor Documentation

◆ GeneralStatistics()

GeneralStatistics ( )
inline

Standard constructor

Member Function Documentation

◆ EuclideanDistance()

static double EuclideanDistance ( double []  x,
double []  y 
)
inlinestatic

Estimates the Squared Euclidian distance between two tuples. x and y must have the same length.

◆ LinearRegression() [1/2]

static void LinearRegression ( double []  xVals,
double []  yVals,
out double  rsquared,
out double  yintercept,
out double  slope 
)
inlinestatic

Fits a line to a collection of (x,y) points.

Parameters
xValsThe x-axis values.
yValsThe y-axis values.
rsquaredThe r^2 value of the line.
yinterceptThe y-intercept value of the line (i.e. y = ax + b, yintercept is b).
slopeThe slop of the line (i.e. y = ax + b, slope is a).

◆ LinearRegression() [2/2]

XYValue LinearRegression ( List< XYValue values)
inline

Linear regression calculates a and b in y = ax + b

Parameters
valuesList of (x,y) values
Returns
(x,y) value, where x - slope, y - intercept

◆ Mean()

static double Mean ( List< double >  values)
inlinestatic

Mean from vector of double values

Parameters
valuesList of double values
Returns
Mean

◆ nPVI()

static double nPVI ( double []  values)
inlinestatic

Normalized Pairwise Variability Index

Parameters
valuesArray of double input values
Returns
nPVI

◆ rPVI()

static double rPVI ( double []  values)
inlinestatic

Raw Pairwise Variability Index

Parameters
valuesArray of double input values
Returns
rPVI value

◆ Sum()

static double Sum ( List< double >  values)
inlinestatic

Sum from vector of double values

Parameters
valuesList of double values
Returns
Sum

The documentation for this class was generated from the following file: